Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Nat Commun ; 15(1): 3384, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649760

RESUMO

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.


Assuntos
Predisposição Genética para Doença , Leucopenia , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Humanos , Contagem de Leucócitos , Masculino , Feminino , Leucopenia/genética , Leucopenia/sangue , Pessoa de Meia-Idade , Idoso , Adulto , Imunossupressores/uso terapêutico
3.
J Med Genet ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443156

RESUMO

BACKGROUND: Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS: Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS: We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION: We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38317060

RESUMO

BACKGROUND: The genetic architecture of juvenile idiopathic arthritis (JIA) remains only partially comprehended. There is a clear imperative for continued endeavors to uncover insights into the underlying causes of JIA. METHODS: This study encompassed a comprehensive spectrum of endeavors, including conducting a JIA GWAS meta-analysis that incorporated data from 4,550 JIA cases and 18 446 controls. We employed in silico and genome-editing approaches to prioritize target genes. To investigate pleiotropic effects, we conducted phenome-wide association studies. Cell-type enrichment analyses were performed by integrating bulk and single-cell sequencing data. Finally, we delved into potential druggable targets for JIA. RESULTS: Fourteen genome-wide significant non-HLA loci were identified including four novel loci, each exhibiting pleiotropic associations with other autoimmune diseases or musculoskeletal traits. We uncovered strong genetic correlation between JIA and bone mineral density (BMD) traits at 52 genomic regions, including three GWAS loci for JIA. Candidate genes with immune functions were captured by in silico analyses at each novel locus, with additional findings identified through our experimental approach. Cell-type enrichment analysis revealed 21 specific immune cell types crucial for affected organs in JIA, indicating their potential contribution to the disease. Finally, 24 known or candidate druggable target genes were prioritized. CONCLUSIONS: Our identification of four novel JIA associated genes, CD247, RHOH, COLEC10 and IRF8, broadens novel potential drug repositioning opportunities. We established a new genetic link between COLEC10, TNFRSF11B and JIA/BMD. Additionally, the identification of RHOH underscores its role in positive thymocyte selection, thereby illuminating a critical facet of JIA's underlying biological mechanisms.

5.
Nat Med ; 30(2): 480-487, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374346

RESUMO

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Assuntos
Doença Crônica , 60488 , Saúde da População , Adulto , Criança , Humanos , Comunicação , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores de Risco , Estados Unidos
6.
Genome Biol ; 25(1): 22, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229171

RESUMO

BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Adulto , Adolescente , Humanos , Criança , Pré-Escolar , Puberdade/genética , Fenótipo , Estatura/genética , Avaliação de Resultados em Cuidados de Saúde , Estudos Longitudinais
7.
BMC Genomics ; 25(1): 54, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212678

RESUMO

BACKGROUND: Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS: A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS: A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Bovinos/genética , Animais , Fenótipo , Ingestão de Alimentos/genética , Comportamento Alimentar , Ração Animal/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-38191060

RESUMO

BACKGROUND: CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES: This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS: The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS: This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS: Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38072244

RESUMO

OBJECTIVE: Accumulative evidence indicates a critical role of mitochondrial function in autism spectrum disorders (ASD), implying that ASD risk may be linked to mitochondrial dysfunction due to DNA (mtDNA) variations. Although a few studies have explored the association between mtDNA variations and ASD, the role of mtDNA in ASD is still unclear. Here, we aimed to investigate whether mitochondrial DNA haplogroups are associated with the risk of ASD. METHOD: Two European cohorts and an Ashkenazi Jewish (AJ) cohort were analyzed, including 2,062 ASD patients in comparison with 4,632 healthy controls. DNA samples were genotyped using Illumina HumanHap550/610 and Illumina 1M arrays, inclusive of mitochondrial markers. Mitochondrial DNA (mtDNA) haplogroups were identified from genotyping data using HaploGrep2. A mitochondrial genome imputation pipeline was established to detect mtDNA variants. We conducted a case-control study to investigate potential associations of mtDNA haplogroups and variants with the susceptibility to ASD. RESULTS: We observed that the ancient adaptive mtDNA haplogroup K was significantly associated with decreased risk of ASD by the investigation of 2 European cohorts including a total of 2,006 cases and 4,435 controls (odds ratio = 0.64, P=1.79 × 10-5), and we replicated this association in an Ashkenazi Jewish (AJ) cohort including 56 cases and 197 controls (odds ratio = 0.35, P = 9.46 × 10-3). Moreover, we demonstrate that the mtDNA variants rs28358571, rs28358584, and rs28358280 are significantly associated with ASD risk. Further expression quantitative trait loci (eQTLs) analysis indicated that the rs28358584 and rs28358280 genotypes are associated with expression levels of nearby genes in brain tissues, suggesting those mtDNA variants may confer risk for ASD via regulation of expression levels of genes encoded by the mitochondrial genome. CONCLUSION: This study helps to shed light on the contribution of mitochondria in ASD and provides new insights into the genetic mechanism underlying ASD, suggesting the potential involvement of mtDNA-encoded proteins in the development of ASD.

10.
Cell Rep ; 42(11): 113439, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963017

RESUMO

Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways underlying human brain size variation in health and disease.


Assuntos
Encéfalo , Transcriptoma , Adulto , Humanos , Tamanho do Órgão , Encéfalo/metabolismo , Fenótipo , Estudo de Associação Genômica Ampla/métodos , Biologia Molecular , Predisposição Genética para Doença
11.
Transl Res ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37989391

RESUMO

BACKGROUND: Patients with birth defects (BD) exhibit an elevated risk of cancer. We aimed to investigate the potential link between pediatric cancers and BDs, exploring the hypothesis of shared genetic defects contributing to the coexistence of these conditions. METHODS: This study included 1454 probands with BDs (704 females and 750 males), including 619 (42.3%) with and 845 (57.7%) without co-occurrence of pediatric onset cancers. Whole genome sequencing (WGS) was done at 30X coverage through the Kids First/Gabriella Miller X01 Program. RESULTS: 8211 CNV loci were called from the 1454 unrelated individuals. 191 CNV loci classified as pathogenic/likely pathogenic (P/LP) were identified in 309 (21.3%) patients, with 124 (40.1%) of these patients having pediatric onset cancers. The most common group of CNVs are pathogenic deletions covering the region ChrX:52,863,011-55,652,521, seen in 162 patients including 17 males. Large recurrent P/LP duplications >5MB were detected in 33 patients. CONCLUSIONS: This study revealed that P/LP CNVs were common in a large cohort of BD patients with high rate of pediatric cancers. We present a comprehensive spectrum of P/LP CNVs in patients with BDs and various cancers. Notably, deletions involving E2F target genes and genes implicated in mitotic spindle assembly and G2/M checkpoint were identified, potentially disrupting cell-cycle progression and providing mechanistic insights into the concurrent occurrence of BDs and cancers.

12.
Biol Psychiatry ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865391

RESUMO

BACKGROUND: Previous studies have implicated both rare copy number variations (CNVs) and common variants in liability for attention-deficit/hyperactivity disorder (ADHD). However, how common and rare genetic variants jointly contribute to individual liability requires further investigation in larger cohorts. METHODS: This study comprises 9385 participants of European descent and 7810 participants of African American ancestry who were recruited from the greater Philadelphia area by the Children's Hospital of Philadelphia. The polygenic risk score (PRS) of each participant was estimated by linkage disequilibrium pruning and p-value thresholding (P + T) methods using PRSice-2. We investigated whether the risk of ADHD follows a polygenic liability threshold model wherein 1) the risk of ADHD requires less contribution from common variants in the presence of a rare CNV, and 2) control carriers of ADHD-associated CNVs have lower common risk allele burden than noncarriers. RESULTS: CNVs previously reported in ADHD cases were significantly associated with ADHD risk in both the European American cohort and the African American cohort. Healthy control participants carrying those same risk CNVs had lower PRSs than those without risk CNVs in the European American cohort. This result was replicated in the African American cohort. However, PRSs were not significantly different in case participants carrying risk CNVs versus those without risk CNVs. CONCLUSIONS: These findings provide evidence in support of interactive effects of PRS and ADHD-associated CNVs on disease risk and add novel insights into the genetic basis of ADHD by highlighting a protective role of low PRS in ADHD.

13.
J Community Genet ; 14(6): 505-517, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700208

RESUMO

Circassians and Chechens in Jordan, both with Caucasian ancestry, are genetically isolated due to high rate of endogamous marriages. Recent interest in these populations has led to studies on their genetic similarities, differences, and epidemiological differences in various diseases. Research has explored their predisposition to conditions like diabetes, hypertension, and cancer. Moreover, pharmacogenetic (PGx) studies have also investigated medication response variations within these populations, and forensic studies have further contributed to understanding these populations. In this review article, we first discuss the background of these minority groups. We then show the results of a principle component analysis (PCA) to investigate the genetic relationships between Circassian and Chechen populations living in Jordan. We here present a summary of the findings from the 10 years of research conducted on them. The review article provides a comprehensive summary of research findings that are truly valuable for understanding the unique genetic characteristics, diseases' prevalence, and medication responses among Circassians and Chechens living in Jordan. We believe that gaining deeper comprehension of the root causes of various diseases and developing effective treatment methods that benefit the society as a whole are imperative to engaging a wide range of ethnic groups in genetic research.

14.
Mol Cancer ; 22(1): 126, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543594

RESUMO

Children with birth defects (BD) express distinct clinical features that often have various medical consequences, one of which is predisposition to the development of cancers. Identification of the underlying genetic mechanisms related to the development of cancer in BD patients would allow for preventive measures. We performed a whole genome sequencing (WGS) study on blood-derived DNA samples from 1566 individuals without chromosomal anomalies, including 454 BD probands with at least one type of malignant tumors, 767 cancer-free BD probands, and 345 healthy individuals. Exclusive recurrent variants were identified in BD-cancer and BD-only patients and mapped to their corresponding genomic regions. We observed statistically significant overlaps for protein-coding/ncRNA with exclusive variants in exons, introns, ncRNAs, and 3'UTR regions. Exclusive exonic variants, especially synonymous variants, tend to occur in prior exons locus in BD-cancer children. Intronic variants close to splicing site (< 500 bp from exon) have little overlaps in BD-cancer and BD-only patients. Exonic variants in non-coding RNA (ncRNA) tend to occur in different ncRNAs exons regardless of the overlaps. Notably, genes with 5' UTR variants are almost mutually exclusive between the two phenotypes. In conclusion, we conducted the first genomic study to explore the impact of recurrent variants exclusive to the two distinguished clinical phenotypes under study, BD with or without cancer, demonstrating enrichment of selective protein-coding/ncRNAs differentially expressed between these two phenotypes, suggesting that selective genetic factors may underlie the molecular processes of pediatric cancer development in BD children.


Assuntos
Neoplasias , Splicing de RNA , Humanos , Mutação , Éxons , Genômica , Neoplasias/genética , Íntrons
15.
J Hepatol ; 79(6): 1385-1395, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572794

RESUMO

BACKGROUND & AIMS: Biliary atresia (BA) is poorly understood and leads to liver transplantation (LT), with the requirement for and associated risks of lifelong immunosuppression, in most children. We performed a genome-wide association study (GWAS) to determine the genetic basis of BA. METHODS: We performed a GWAS in 811 European BA cases treated with LT in US, Canadian and UK centers, and 4,654 genetically matched controls. Whole-genome sequencing of 100 cases evaluated synthetic association with rare variants. Functional studies included whole liver transcriptome analysis of 64 BA cases and perturbations in experimental models. RESULTS: A GWAS of common single nucleotide polymorphisms (SNPs), i.e. allele frequencies >1%, identified intronic SNPs rs6446628 in AFAP1 with genome-wide significance (p = 3.93E-8) and rs34599046 in TUSC3 at sub-threshold genome-wide significance (p = 1.34E-7), both supported by credible peaks of neighboring SNPs. Like other previously reported BA-associated genes, AFAP1 and TUSC3 are ciliogenesis and planar polarity effectors (CPLANE). In gene-set-based GWAS, BA was associated with 6,005 SNPs in 102 CPLANE genes (p = 5.84E-15). Compared with non-CPLANE genes, more CPLANE genes harbored rare variants (allele frequency <1%) that were assigned Human Phenotype Ontology terms related to hepatobiliary anomalies by predictive algorithms, 87% vs. 40%, p <0.0001. Rare variants were present in multiple genes distinct from those with BA-associated common variants in most BA cases. AFAP1 and TUSC3 knockdown blocked ciliogenesis in mouse tracheal cells. Inhibition of ciliogenesis caused biliary dysgenesis in zebrafish. AFAP1 and TUSC3 were expressed in fetal liver organoids, as well as fetal and BA livers, but not in normal or disease-control livers. Integrative analysis of BA-associated variants and liver transcripts revealed abnormal vasculogenesis and epithelial tube formation, explaining portal vein anomalies that co-exist with BA. CONCLUSIONS: BA is associated with polygenic susceptibility in CPLANE genes. Rare variants contribute to polygenic risk in vulnerable pathways via unique genes. IMPACT AND IMPLICATIONS: Liver transplantation is needed to cure most children born with biliary atresia, a poorly understood rare disease. Transplant immunosuppression increases the likelihood of life-threatening infections and cancers. To improve care by preventing this disease and its progression to transplantation, we examined its genetic basis. We find that this disease is associated with both common and rare mutations in highly specialized genes which maintain normal communication and movement of cells, and their organization into bile ducts and blood vessels during early development of the human embryo. Because defects in these genes also cause other birth defects, our findings could lead to preventive strategies to lower the incidence of biliary atresia and potentially other birth defects.


Assuntos
Atresia Biliar , Criança , Animais , Camundongos , Humanos , Atresia Biliar/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Peixe-Zebra/genética , Canadá
17.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425875

RESUMO

The KOLF2.1J iPSC line was recently proposed as a reference iPSC to promote the standardization of research studies in the stem cell field. Due to overall good performance differentiating to neural cell lineages, high gene editing efficiency, and absence of genetic variants associated to neurological disorders KOLF2.1J iPSC line was particularly recommended for neurodegenerative disease modeling. However, our work uncovers that KOLF2.1J hPSCs carry heterozygous small copy number variants (CNVs) that cause DTNBP1, JARID2 and ASTN2 haploinsufficiencies, all of which are associated with neurological disorders. We further determine that these CNVs arose in vitro over the course of KOLF2.1J iPSC generation from a healthy donor-derived KOLF2 iPSC line and affect the expression of DNTBP1, JARID2 and ASTN2 proteins in KOLF2.1J iPSCs and neural progenitors. Therefore, our study suggests that KOLF2.1J iPSCs carry genetic variants that may be deleterious for neural cell lineages. This data is essential for a careful interpretation of neural cell studies derived from KOLF2.1J iPSCs and highlights the need for a catalogue of iPSC lines that includes a comprehensive genome characterization analysis.

18.
Alzheimers Dement ; 19(12): 5765-5772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37450379

RESUMO

BACKGROUND: As a collaboration model between the International HundredK+ Cohorts Consortium (IHCC) and the Davos Alzheimer's Collaborative (DAC), our aim was to develop a trans-ethnic genomic informed risk assessment (GIRA) algorithm for Alzheimer's disease (AD). METHODS: The GIRA model was created to include polygenic risk score calculated from the AD genome-wide association study loci, the apolipoprotein E haplotypes, and non-genetic covariates including age, sex, and the first three principal components of population substructure. RESULTS: We validated the performance of the GIRA model in different populations. The proteomic study in the participant sites identified proteins related to female infertility and autoimmune thyroiditis and associated with the risk scores of AD. CONCLUSIONS: As the initial effort by the IHCC to leverage existing large-scale datasets in a collaborative setting with DAC, we developed a trans-ethnic GIRA for AD with the potential of identifying individuals at high risk of developing AD for future clinical applications.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Estudo de Associação Genômica Ampla , Proteômica , Genômica , Medição de Risco
19.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333246

RESUMO

Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.

20.
Am J Med Genet A ; 191(8): 2156-2163, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37227088

RESUMO

Joubert syndrome (JBTS) is a Mendelian disorder of the primary cilium defined by the clinical triad of hypotonia, developmental delay, and a distinct cerebellar malformation called the molar tooth sign. JBTS is inherited in an autosomal recessive, autosomal dominant, or X-linked recessive manner. Though over 40 genes have been identified as causal for JBTS, molecular diagnosis is not made in 30%-40% of individuals who meet clinical criteria. TOPORS encodes topoisomerase I-binding arginine/serine-rich protein, and homozygosity for a TOPORS missense variant (c.29C > A; p.(Pro10Gln)) was identified in individuals with the ciliopathy oral-facial-digital syndrome in two families of Dominican descent. Here, we report an additional proband of Dominican ancestry with JBTS found by exome sequencing to be homozygous for the identical p.(Pro10Gln) TOPORS missense variant. Query of the Mount Sinai BioMe biobank, which includes 1880 individuals of Dominican ancestry, supports a high carrier frequency of the TOPORS p.(Pro10Gln) variant in individuals of Dominican descent. Our data nominates TOPORS as a novel causal gene for JBTS and suggests that TOPORS variants should be considered in the differential of ciliopathy-spectrum disease in individuals of Dominican ancestry.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Anormalidades do Olho , Doenças Renais Císticas , Malformações do Sistema Nervoso , Humanos , Cerebelo/anormalidades , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Retina/anormalidades , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Mutação , Ciliopatias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...